362 research outputs found

    The Cryogenic Target for the G0^0 Experiment at Jefferson Lab

    Full text link
    A cryogenic horizontal single loop target has been designed, built, tested and operated for the G0^0 experiment in Hall C at Jefferson Lab. The target cell is 20 cm long, the loop volume is 6.5 l and the target operates with the cryogenic pump fully immersed in the fluid. The target has been designed to operate at 30 Hz rotational pump speed with either liquid hydrogen or liquid deuterium. The high power heat exchanger is able to remove 1000 W of heat from the liquid hydrogen, while the nominal electron beam with current of 40 Ό\muA and energy of 3 GeV deposits about 320 W of heat into the liquid. The increase in the systematic uncertainty due to the liquid hydrogen target is negligible on the scale of a parity violation experiment. The global normalized yield reduction for 40 Ό\muA beam is about 1.5 % and the target density fluctuations contribute less than 238 ppm (parts per million) to the total asymmetry width, typically about 1200 ppm, in a Q2^2 bin.Comment: 27 pages, 14 figure

    A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa

    Get PDF
    Southernmost Africa, with extensive upland geomorphic surfaces, deep canyons, and numerous faults, has long interested geoscientists. A paucity of dates and low rates of background seismicity make it challenging to quantify the pace of landscape change and determine the likelihood and timing of fault movement that could raise and lower parts of the landscape and create associated geohazards. To infer regional rates of denudation, we measured 10Be in river sediment samples and found that south-central South Africa is eroding ∌5 m m.y.-1, a slow erosion rate consistent with those measured in other non-tectonically active areas, including much of southern Africa. To estimate the rate at which extensive, fossil, upland, silcrete-mantled pediment surfaces erode, we measured 10Be and 26Al in exposed quartzite samples. Undeformed upland surfaces are little changed since the Pliocene; some have minimum exposure ages exceeding 2.5 m.y. (median, 1.3 m.y.) and maximum erosion rates of \u3c0.2 m m.y.-1 (median, 0.34 m m.y.-1), consistent with no Quaternary movement on faults that displace the underlying quartzite but not the silcrete cover. We directly dated a recent displacement event on the only recognized Quaternary-active fault in South Africa, a fault that displaces both silcrete and the underlying quartzite. The concentrations of 10Be in exposed fault scarp samples are consistent with a 1.5 m displacement occurring ca. 25 ka. Samples from this offset upland surface have lower minimum limiting exposure ages and higher maximum erosion rates than those from undeformed pediment surfaces, consistent with Pleistocene earthquakes and deformation reducing overall landscape stability proximal to the fault zone. Rates of landscape change on the extensive, stable, silcretized, upland pediment surfaces are an order of magnitude lower than basin-average erosion rates. As isostatic response to regional denudation uplifts the entire landscape at several meters per million years, valleys deepen, isolating stable upland surfaces and creating the spectacular relief for which the region is known

    No evidence of an 11.16 MeV 2+ state in 12C

    Full text link
    An experiment using the 11B(3He,d)12C reaction was performed at iThemba LABS at an incident energy of 44 MeV and analyzed with a high energy-resolution magnetic spectrometer, to re-investigate states in 12C published in 1971. The original investigation reported the existence of an 11.16 MeV state in 12C that displays a 2+ nature. In the present experiment data were acquired at laboratory angles of 25-, 30- and 35- degrees, to be as close to the c.m. angles of the original measurements where the clearest signature of such a state was observed. These new low background measurements revealed no evidence of the previously reported state at 11.16 MeV in 12C

    Relativistic predictions of exclusive 208Pb(p⃗,2p)207Tℓ^{208}Pb(\vec{p},2p) ^{207}T\ell analyzing powers at an incident energy of 202 MeV

    Full text link
    Within the framework of the relativistic distorted wave impulse approximation (DWIA), we investigate the sensitivity of the analyzing power - for exclusive proton knockout from the 3s1/2_{1/2}, 2d3/2_{3/2} and 2d5/2_{5/2} states in 208^{208}Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.0∘28.0^{\circ}, −54.6∘-54.6^{\circ}) - to different distorting optical potentials, finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as medium-modified coupling constants and meson masses. Results are also compared to the nonrelativistic DWIA predictions based on the Schr\"{o}dinger equation. Whereas the nonrelativistic model fails severely, both ZR and FR relativistic DWIA models provide an excellent description of the data. For the FR predictions, it is necessary to invoke a 20% reduction of sigma-nucleon and omega-nucleon coupling constants as well as for σ\sigma-, ρ\rho- and ω\omega-meson masses, by the nuclear medium. On the other hand, the ZR predictions suggest that the strong interaction in the nuclear medium is adequately represented by the free nucleon-nucleon interaction associated with the impulse approximation. We also demonstrate that, although the analyzing power is relatively insensitive to the use different relativistic global optical potential parameter sets, the prominent oscillatory behavior of this observable is largely attributed to distortion of the scattering wave functions relative to their plane wave values.Comment: 16 pages, 3 figures, submitted to Phys. Rev.

    Studies of the Giant Dipole Resonance in 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb with high energy-resolution inelastic proton scattering under 0∘^\circ

    Full text link
    A survey of the fine structure of the Isovector Giant Dipole Resonance (IVGDR) was performed, using the recently commissioned zero-degree facility of the K600 magnetic spectrometer at iThemba LABS. Inelastic proton scattering at an incident energy of 200 MeV was measured on 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb. A high energy resolution (ΔE≃\rm{\Delta}\it{E} \simeq 40 keV FWHM) could be achieved after utilising faint-beam and dispersion-matching techniques. Considerable fine structure is observed in the energy region of the IVGDR and characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The comparison with Quasiparticle-Phonon Model (QPM) calculations provides insight into the relevance of different giant resonance decay mechanisms. Photoabsorption cross sections derived from the data assuming dominance of relativistic Coulomb excitation are in fair agreement with previous work using real photons.Comment: 15 pages, 15 figure

    Wavelet signatures of KK-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,pâ€Č') scattering off 146,148,150^{146,148,150}Nd

    Get PDF
    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146,148,150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0, 1 and K = 2 components.Comment: 7 pages, 6 figure

    Second T = 3/2 state in 9^9B and the isobaric multiplet mass equation

    Get PDF
    Recent high-precision mass measurements and shell model calculations~[Phys. Rev. Lett. {\bf 108}, 212501 (2012)] have challenged a longstanding explanation for the requirement of a cubic isobaric multiplet mass equation for the lowest A=9A = 9 isospin quartet. The conclusions relied upon the choice of the excitation energy for the second T=3/2T = 3/2 state in 9^9B, which had two conflicting measurements prior to this work. We remeasured the energy of the state using the 9Be(3He,t)^9{\rm Be}(^3{\rm He},t) reaction and significantly disagree with the most recent measurement. Our result supports the contention that continuum coupling in the most proton-rich member of the quartet is not the predominant reason for the large cubic term required for A=9A = 9 nuclei

    Relativistic predictions of spin observables for exclusive proton knockout reactions

    Full text link
    Within the framework of the relativistic distorted wave impulse approximation (DWIA), we investigate the sensitivity of complete sets of polarization transfer observables for exclusive proton knockout from the 3s1/2_{1/2}, 2d3/2_{3/2} and 2d5/2_{5/2} states in 208^{208}Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.0∘28.0^{\circ}, −54.6∘-54.6^{\circ}), to different distorting optical potentials, finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as medium-modified meson-nucleon coupling constants and meson masses. Results are also compared to the nonrelativistic DWIA predictions based on the Schr\"{o}dinger equation.Comment: Submitted for publication to Physicical Review C, 23 pages, 7 figure

    Binary projectile fragmentation of 12C at an incident energy of 33.3 MeV/nucleon

    Get PDF
    Direct binary projectile fragmentation is being investigated for the case where a 400 MeV 12C projectile breaks up into an particle and a 8Be fragment in the interaction with a thin 93Nb and 197Au target. While the 8Be fragments were measured at 9 , the correlated particles were detected in an angular range between 16 and 30 on the opposite side of the beam. From the preliminary results presented here one may obtain information on the amount of quasi-elastic fragmentation (both fragments do not suffer any further interactions after they are produced). These experimental results indicate that the quasi-elastic break-up process is the dominant contribution to the measured correlation spectra. As was also observed in earlier work, the most forward quasi-elastically emitted particles have energies exceeding the beam velocity
    • 

    corecore